JIAICIS

COMMUNICATIONS

Published on Web 06/07/2002

Kinetic and Thermodynamic Preferences for the Diastereoselective Oxidative
Addition of H ; to trans-Ir(P*R3),(CO)CI: Monodentate Chiral Phosphines May
Impart Exceptional Degrees of Diastereoselectivity

Jun Ho Shin and Gerard Parkin*
Department of Chemistry, Columbia Usisity, New York, New York 10027

Received February 28, 2002; Revised Manuscript Received April 24, 2002

Oxidative addition of dihydrogen is a crucial step in transition- 8 - 8
metal-catalyzed reactions involving.HDlefin hydrogenation is one
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firlH; —= [Ir] + Hy

such reaction, and the asymmetric version catalyzed by chiral
rhodium—phosphine complexes has experienced considerable com- ¢ |
mercial impact, as exemplified by Monsanto’s synthesis of L-

DOPAZL2 A particularly interesting feature of these asymmetric

rhodium-catalyzed reactions is that the selectivity is counter to the
preference of the catalyst to bind to a particular face of the prochiral :
olefin,%34 such that the reactions have been proposed to occur by §
an “anti-lock-and-key” mechanisfi.Oxidative addition of H is 3
generally recognized to be the rate-determining and enantiomer- 2
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determining step in these reacticrend the selectivity is therefore ST 25 kinetc

dictated by the dramatically enhanced reactivity gftblvards the / o

minor component olefin adduct. To account for the overall obF—— , . ; 0 . —
selectivity, the susceptibility of the diastereomeric adducts towards o e s e 2 e 2"

oxidative addition of Hhas been estimated to differ by a substantial Foure 1. Kinetics plots idative addition of o raNSIHP*Ry)
factor of ca. 600 in rate constaftt-owever, well-defined examples ~ F/g9uré 1. Kinetics plots for oxidative addition of ¥fto trans-Ir(P*Rs)-
of oxidative addition of Hthat exhibit selectivity of this magnitude f;%g)[%ﬁr;j)]rs(_mcuve elimination fromanslr(P*Ra)o( CO)CIH, (P*Rs =
are unprecedented. In this paper, we provide the first report that
chiral monghosphine ligands are capable of imparting a high Scheme 1
degree of diastereoselectivity in the oxidative addition eftdéla PR
metal center and that the selectivity exceeds that for certain bidentate,.— ;¢
phosphine ligands. .. +o
The reaction of Hwith Vaska’s complextrans-Ir(PPh),(CO)- P
Cl, is the classic example of oxidative addition. Vaska-type
complexes, therefore, provide an excellent system to determine the |
ability of chiral phosphine ligands to impart diastereoselectivity in Ra R
the oxidative addition of Kl For this purpose, we have employed \Q
the monodentate chiral phosphines PhEY{E,)],,° PhP[Me&C4Hg],° R =Me, Pr
and PhP[PsC4H¢]” (Scheme 1).
TransIr(P*R3),(CO)CI derived from racemic P*Rconsists of
a pair ofR SandRR/S S diastereomergand oxidative addition of consideration, as illustrated in Figuré1Of most interest, there is
H, to this mixture yieldghreediastereomers (one of which exists @ significant difference in t_he barrier for oxidative addition of H
as an enantiomeric pair). The formation of three diastereomers from € the two faces of thenesoisomer, R S)-transIr(P*Rs),(CO)CI.
a mixture composed of two diastereomers is a consequence ofFOr €xample, the rate constant for oxidative addition gféione
oxidative addition of Hto themesdsomer, R,9)-transIr(P*R3),- face of R S)-transir(P*Rs)(CO)CI (P*Rs = PhP[PRLC.Hg]) is
(CO)CI, resulting in a structure in which the iridium is a @& factor of at least-60 greater than that to the other fa€e.
“pseudoasymmetric centet'The term “pseudoasymmetric center” However, desplt'e the extreme klnetlc_ selectivity, the klne_tlca_lly
is used to describe a stereogenic center in an achiral molecule, and@vored product isiot the thermodynamic product, and the kinetic
is given the notation or s. Thus, the two diastereomers derived ~Product transforms to a 1:3 equilibrium mixture with the thermo-
from addition of H to (RS-transIr(P*Rs),(CO)CI may be dynamic product over a per_lod _of days (as |I_IustraFeo_l in _Flgure 1
classified aRr,SandRsS, differing only in the configuration at ~ for PhP[(GMey)]2).** The kinetics of reductive elimination of
iridium (Scheme 130 H, from the .R',r,S)- and R,S,S-transrlr(P*Rg)z(CO)CIH2 diaster- .
Significantly, the barriers to both oxidative addition and reductive ©0mers exhibit even greater differences than those for the oxida-
elimination are highly dependent upon the diastereomer under tive addition (Figure 2). Thus, the rate constants for reductive
elimination of K from theRr,SandR,s,S diastereomers dfans
*To whom correspondence should be addressed. E-mail: parkin@ Ir(P*R3)(CO)CIH, (P*Rs = PhP[PLC4He]) differ by a factor of
chem.columbia.edu. ~17011.14
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